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Chapter

The Programme for International Student Assessment (PISA) is an international assessment of the
skills and knowledge of 15-year olds. A project of member countries of the Organisation for
Economic Co-operation and Development (OECD), it has taken place at three year intervals since
2000. Detailed reports of Australian students’ performance, their attitudes

The full national reports can
be found, along with much
more information about PISA,
at www.acer.edu.au/ozpisa.

and beliefs towards mathematics in PISA can be found in the full reports
written to inform the wider educational community. In December 2013
the results of the most recent PISA assessment, PISA 2012, will be released.

After each three-year cycle, a number of items from the assessment are
released by the OECD so that educators are able to see how the assessment is constructed. By
combining these released items with a description of Australian students’ performance on the
items, and providing an overall picture of achievement in the subject area, this report (and the
companion reports on reading literacy and scientific literacy) aims to enable teachers to gain a
deeper understanding of PISA, and to use the results of the assessment to inform their teaching.

More and more, policy makers are using the results of studies such as PISA to make decisions
about education — for example the Australian Government’s National Plan for School Improvement
establishes a new target to place Australia in the top five countries in the world in reading,
numeracy and science by 2025 (see www.betterschools.gov.au). It is important that practitioners
and others understand the assessments which underpin the goals, and think about how they are
able to make a difference to the outcomes of Australian children.

The aim of this report is to provide this understanding, and encourage discussion about
assessment achievement, and benchmarking within the wider educational community.

PISA ... what is it?

PISA is a key part of Australia’s National Assessment Program (NAP). Alongside NAPLAN, which
is a census of students at Years 3, 5, 7 and 9, nationally representative samples of students
participate in three national assessments in science literacy, civics and citizenship, and ICT
literacy. Together with these, nationally representative samples of Australian students also
participate in two international studies as part of the NAP (Figure 1.1).
These studies enable Australia to benchmark our students in reading,
mathematical and scientific literacy against similar samples of students in
more than 60 other countries.

PISA is a key part of the
MCEECDYA National
Assessment Program
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Figure 1.1 Components of the National Assessment Program

Science
literacy
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NAP, see www.nap.edu.au

PISA was designed to assist governments in monitoring the outcomes of education systems in terms

of student achievement on a regular basis and within an internationally accepted common

Students aged 15 were
chosen as the target group
in PISA as compulsory
schooling ends at this age in
many countries.

framework, in other words, to allow them to compare how students in
their countries were performing on a set of common tasks compared to
students in other countries. In this way, PISA helps governments to not
only understand, but also to enhance, the effectiveness of their
educational systems and to learn from other countries’ practices.

PISA seeks to measure how well young adults, at age 15 and therefore

near the end of compulsory schooling in most participating education systems, have acquired and

are able to use knowledge and skills in particular areas to meet real-life challenges.

In addition to assessing facts
and knowledge, PISA assesses
students’ ability to use their
knowledge to solve real-
world problems. Thus, the
term ‘literacy’ is used, since it
implies not only knowledge of
a domain, but also the ability
to apply that knowledge.

PISA 2000
Reading Literacy
Mathematical Literacy

Scientific Literacy

PISA 2003
Reading Literacy
Mathematical Literacy

Scientific Literacy

As part of PISA, students complete an assessment including items testing
reading literacy, mathematical literacy and scientific literacy. In each cycle
of PISA, one of the cognitive areas is the main focus of the assessment,
with most of the items focussing on this area and fewer items on the other
two areas (although still enough items to provide links between years) (see
Figure 1.2 — shading indicates the major domain of the cycle). Students
also complete an extensive background questionnaire, and school
principals complete a survey describing the context of education at their
school, including the level of resources in the school, qualifications of staff
and teacher morale.

PISA 2006 PISA 2009 PISA 2012

Reading Literacy Reading Literacy Reading Literacy

Mathematical Literacy =~ Mathematical Literacy ~ Mathematical Literacy

Scientific Literacy Scientific Literacy Scientific Literacy

Figure 1.2 Cycles of PISA and the major and minor domains of assessment for each cycle
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The reporting of the findings from PISA focuses on issues such as:

How well are young adults prepared to meet the challenges of the future?

Can they analyse, reason and communicate their ideas effectively?

What skills do they possess that will facilitate their capacity to adapt to rapid societal change?
Are some ways of organising schools or school learning more effective than others?

What influence does the quality of school resources have on student outcomes?

What educational structures and practices maximise the opportunities of students from
disadvantaged backgrounds?

P How equitable is the provision of education within a country or across countries?

What do PISA students and schools do?

Cognitive Assessment

In PISA 2009, the majority of the assessment was devoted to reading
Students completed a pen-

literacy, with mathematical literacy and scientific literacy assessed to a
and-paper assessment and a

' ) lesser extent. Participating students each completed a two-hour paper-
context questionnaire.

and-pen assessment.

A sub-sample of students who participated in the paper-and-pen assessment also completed
an assessment of digital reading literacy, which used the information technology infrastructure
(computer laboratories) at schools.

The data for this report are based on PISA 2003, as mathematical literacy was the major focus
in that cycle. The format of the testing parallels the testing for 2009, with the majority of the
assessment devoted to mathematical literacy.

Context questionnaire

The data collected in the 35-minute Student Questionnaire provide an opportunity to investigate
factors that may influence performance and consequently give context to the achievement scores.
Responses to a set of ‘core’ questions about the student and their family background, (including
age, year level and socioeconomic status) are collected during each
Students completed a assessment. In PISA 2003 students were also asked about their engagement
background survey and with mathematics, learning strategies and aspects of instruction.

principals a school survey.

Information at the school-level was collected through a 30-minute online
School Questionnaire, answered by the principal (or the principal’s
designate). The questionnaire sought descriptive information about the
school and information about instructional practices.

The survey results provide
rich context for the
achievement data.

A teacher’s guide to PISA mathematical literacy




Participants in PISA 2009

Although PISA was originally created by OECD governments, it has become a major assessment
tool in many regions and countries around the world. Since the first PISA assessment in 2000, the
number of countries or economic regions who have participated from one PISA cycle to the next
has increased. Sixty-five countries participated in PISA 2009, comprising 34 OECD countries and
31 partner countries/economies (Figure 1.3).

Figure 1.3 Countries participating in PISA 2009

OECD countries: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea,
Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic,
Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States of America.

Partner countries/economies: Albania, Argentina, Azerbaijan, Brazil, Bulgaria, Chinese Taipei,

Colombia, Croatia, Dubai (UAE), Hong Kong-China, Indonesia, Jordan, Kazakhstan, Kyrgyzstan,
Latvia, Liechtenstein, Lithuania, Macao-China, Montenegro, Panama, Peru, Qatar, Romania,
Russian Federation, Serbia, Shanghai-China, Singapore, Thailand, Trinidad and Tobago,

Tunisia, Uruguay.

Schools and students

The target population for PISA is students who are 15 years old and enrolled at an educational
institution, either full- or part-time, at the time of testing. In most countries,

It's important that a range

of schools is selected and
that a range of students is
selected from within schools.
This way we are able to get

150 schools and 35 students in each school were randomly selected to
participate in PISA. In some countries, including Australia, a larger sample
of schools and students participated. In Australia’s case, a larger sample
provides the ability to report reliable results for each state and territory and
for Indigenous students. The larger PISA sample is also used as the next
cohort for the Longitudinal Survey of Australian Youth (LSAY). The Australian
sample for PISA 2009 consisted of 353 schools and 14,251 students. The
sample for PISA 2003 was 321 schools and 12,551 students.

an accurate picture of the
whole Australian student
population.
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This report

This report is one of a series of three reports that focus on Australian students’ performance
on the PISA items that have been released in each of the assessment domains: reading
literacy, mathematical literacy and scientific literacy. Further information about PISA in
Australia is available from the national PISA website - www.acer.edu.au/ozpisa while
further details about Australia’s participation and performance in PISA 2009 is available in
Challenges for Australian Education: Results from PISA 2009.

This report focuses on mathematical literacy. The mathematics items presented here
were released for public viewing after the PISA 2003 assessment, and have not been
used in subsequent assessments. No other mathematics items have been released. The
performance results for the items that are presented in this report are thus based on the
PISA 2003 cohort.

Chapter 2 of this report provides a brief overview of the PISA Mathematics Framework,

so that educators gain an understanding of the context in which the questions for the
assessment are written, and an overview of Australia’s results in the PISA 2003 international
assessment. Chapter 3 provides all of the released items in mathematics for PISA, along
with marking guides, examples of responses and the performance of Australian students
and that of students in comparison countries on these items. The focus of Chapter 4 is the
context behind achievement: attitudes, engagement and learning strategies.

A teacher’s guide to PISA mathematical literacy
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Chapter

How is mathematical literacy defined in PISA?

The PISA mathematical literacy domain is concerned with the capacities of students to
analyse, reason and communicate ideas effectively as they pose, formulate, solve and interpret
mathematical problems in a variety of situations. The PISA assessment framework defines
mathematical literacy as:

... an individual’s capacity to identify and understand the role that mathematics plays in
the world, to make well-founded judgements and to use and engage with mathematics
in ways that meet the needs of that individual’s life as a constructive, concerned and
reflective citizen.

In this conception, mathematical literacy is about meeting life needs. Mathematical literacy is
expressed through using and engaging with mathematics, making informed judgements, and
understanding the usefulness of mathematics in relation to the demands of life.

How is mathematical literacy measured in PISA?

The PISA framework for mathematical literacy is organised into three broad components: the
situations and contexts in which problems are located and that are used as sources of stimulus
material; the mathematical content to which different problems and questions relate, and which
are organised by certain overarching ideas; and the mathematical competencies that must be
activated to connect the real world (in which problems are generated) with mathematics, and then
used to solve the problems. The three components are shown in Figure 2.1.

A teacher’s guide to PISA mathematical literacy
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Figure 2.1 The components of the mathematical literacy framework

Situations and context

An important aspect of mathematical literacy is engagement with mathematics: using and doing
mathematics in a variety of situations. Students were shown written materials that described
various situations that students could conceivably confront, and which required them to apply
their mathematical knowledge, understanding or skill to analyse and deal with the situation.
Four situations are defined in the PISA mathematical literacy framework: personal, educational/
occupational, public and scientific. The situations differ in terms of how directly each problem
affects students’ lives; that is, the proximity of the connection between the student and the
problem context.

For example, personal situations are closest to the student and are characterised by the direct
perceptions involved. The situations also differ in the extent to which the mathematical aspects are
explicit. Some tasks in the assessment refer only to mathematical objects, symbols or structures,
and make no reference to matters outside the mathematical world. This reflects the strong
emphasis in the PISA mathematical literacy assessment on exploring the extent to which students
can both identify mathematical features of a problem presented in a non-mathematical context,
and activate their mathematical knowledge to explore and solve such a problem.

Mathematical content

The PISA framework defines mathematical content in terms of four broad knowledge domains,
referred to as ‘overarching ideas’, which reflect historically established branches of mathematical
thinking and underpin mathematical curricula in education systems throughout the world.
Together, these broad content areas cover the range of mathematics that 15-year-old students
need as a foundation for life and for further extending their horizon in mathematics. The four
overarching ideas are as follows:

D Space and shape - which draws on the curriculum of geometry. Looking for similarities
and differences, recognising shapes in different representations and different dimensions,
understanding the properties of objects and their relative positions, and the relationship
between visual representations (both two- and three-dimensional) and real objects.

Programme for International Student Assessment




D Change and relationships - which relates most closely to the curriculum area of algebra.
Recognising relationships between variables and thinking about relationships in a variety of
forms including symbolic, algebraic, graphical, tabular and geometric.

D Quantity - understanding of relative size, recognition of numerical patterns, and the use of
numbers to represent quantities and quantifiable attributes of real world objects (counting and
measuring).

D Uncertainty — solving problems related to data and chance, which generally correspond to
statistics and probability in school curricula.

In PISA 2003, results were reported for each of these four overarching ideas, as well as for
mathematical literacy overall. Separate reporting by subscale is not possible for mathematical
literacy in 2006 and 2009, and so results from 2003 will be used in this report.

Mathematical processes

While the overarching ideas define the main areas of mathematics that are assessed in PISA, they
do not make explicit the mathematical processes that students apply as they attempt to solve
problems. The PISA mathematics framework uses the term mathematisation to define the cycle

of activity for investigating and solving real-world problems. Beginning with a problem situated

in reality, students must organise it according to mathematical concepts. They progressively trim
away the reality in order to transform the problem into one that is amenable to direct mathematical
solution. Students can then apply specific mathematical knowledge and skills to solve the
mathematical problem before using some form of translation of the mathematical results into a
solution that works for the original problem context; for example, this may involve the formulation
of an explanation or justification of proof.

Various competencies are called into play as the mathematisation process is employed. Each of
these competencies can be processed at different levels of mastery. The PISA mathematical literacy
framework discusses and groups the competencies into three clusters: the reproduction cluster
(which involves the reproduction of practised knowledge); the connections cluster (which builds
on the reproduction cluster by applying problem solving to situations that are not routine but still
familiar); and the reflection cluster (which involves reflecting about the process needed or used to
solve a problem). Key features of the competency clusters are shown in Figure 2.2.

Reproduction Cluster Connections Cluster Reflection Cluster

Integrating and connection

across content, situations and Complex problem solving and posing

Reproducing representations, Reflecting on, and gaining insight

definitions and facts ;\(‘spresert]_tatlonsbl Wi into, mathematics

Interpreting simple, familiar trggé\rgttijolge problem solving, Constructing original mathematical
EPESMIEOTES Interpretation of problem situations EPIEEBTES

Performing routine computations and A o e Wi Communicating complex arguments
procedures and complex reasoning

Using multiple well-defined methods
Engaging in simple mathematical
reasoning

Solving routing problems Using multiple complex methods

Making generalisations

Figure 2.2 PISA competency clusters'’

1 Source: Sheil, G., Perkins, R., Close, S. & Oldham, E. (2007). PISA mathematics: A teacher’s guide. Dublin:
Government Publications (Table 2.1, p.6).
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The structure of the assessment

ltem response formats

The item response formats in the PISA assessment are similar across
literacy domains. Students are presented with a series of units, consisting
of one or more items related to a piece of text or a diagram accompanied

Detailed information

about the construction of
assessment booklets and
the marking of PISA items
can be found in the national

by a text. Some items require students to select the correct answer, using
a basic or complex multiple-choice item format. Other items involve
students having to construct a response. There are three different types of
report, available from constructed response items — short response items (students are required
to provide a response that is numeric or another fixed form); open
constructed response items (students write an explanation of their results

that illustrates aspects of the methods and thought processes they used to answer the question);

www.acer.edu.au/ozpisa.

and closed response items (students give evidence of the calculations they employed to complete
the answer).

Distribution of items

A total of 85 mathematical literacy items were used in PISA 2003, with almost half the items
included in the 2006 and 2009 PISA assessments. The common items assessed in each cycle
provide a link that enables the monitoring of 15-year-old mathematical literacy performance across
and within countries over time. Of the 85 items, 17 were multiple-choice items, 11 were complex
multiple-choice items, 13 were closed-constructed response items, 21 were open-constructed
response items; and 23 were short response items.

Scaling the mathematical literacy tasks

The scale of mathematical literacy was constructed using ltem Response Theory, with mathematical
literacy items ranked by difficulty and linked to student proficiency. Using such methods means
that the relative ability of students taking a particular test can be estimated by considering the
proportion of test items they answer correctly, while the relative difficulty of items in a test can be
estimated by considering the proportion of students getting each item correct. On this scale, it is
possible to estimate the location of individual students, and to describe the degree of mathematical
literacy that they possess.

The relationship between items and students on the mathematical literacy scale (shown in

Figure 2.3) is probabilistic. The estimate of student proficiency reflects the kinds of tasks they
would be expected to successfully complete. A student whose ability places them at a certain point
on the PISA mathematical literacy scale would most likely be able to successfully complete tasks
at or below that location, and increasingly more likely to complete tasks located at progressively
lower points on the scale, but would be less likely to be able to complete tasks above that point,
and increasingly less likely to complete tasks located at progressively higher points on the scale.

Programme for International Student Assessment
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Mathematical literacy scale

Student A, with It is expected that student A will be able
prinnenesee e ltem V|l ———  @— relatively high  to complete items | to V successfully,
 Items with relatively proficiency and probably item VI as well.
¢ high difficulty

It is expected that student B will be able

J ltem IV Student B, to complete items |, Il and Il successfully,

* Items with moderate o— with moderate ~ will have a lower probability of completing
! difficulty proficiency item IV and is unlikely to complete items
O ltem Il V and VI successfully.

{ Items with relatively It is expected that student C will be unable

: low difficulty ltem | ———— Student C, with  to complete items Il to VI successfully,

T @—  relativelylow  and will also have a low probability of
proficiency completing item | successfully.

Figure 2.3 The relationship between items and students on the mathematical literacy scale

Reporting mathematical literacy performance: mean
scores and proficiency levels

The results for all countries for PISA 2000 — 2009 are available through the international and
national reports (www.acer.edu.au/ozpisa). The following section of this report will provide a brief
overview of Australia’s results compared to those of some other countries, and will give the reader
an idea of how Australian students perform on this assessment compared to:

D other native English speaking countries (Canada, New Zealand, United States);

D Finland (highest scoring country previously);

D high-achieving Asian neighbours (Hong Kong — China, Korea, Shanghai — China, Singapore);
and

D the OECD average.

Mean scores and distribution of scores

Student performance in PISA is reported in terms of statistics such as mean scores and measures of
distributions of achievement, which allow for comparisons against other countries and subgroups.
Mean scores provide a summary of student performance and allow comparisons of the relative
standing between different student subgroups. In PISA 2003, the mean score across participating
OECD countries was set at 500 score points with a standard deviation of 100, and in PISA 2009
the OECD average was 496 score points.? This mean score is the benchmark against which future
mathematical performance in PISA is compared.

2 The OECD average reflects the mean score for all OECD countries. The OECD average can change from
each PISA assessment because the number of participating countries differs (for eg. in 2003, there were
30 OECD countries and in 2009 this had increased to 34 OECD countries) and also because the overall
performance for a country can change.

A teacher’s guide to PISA mathematical literacy
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Difference from OECD average (score points)

Figure 2.4 shows the scores of the countries listed above relative to the OECD average, for PISA
2009 mathematical literacy. All countries that are annotated with an asterisk (*) scored at a level
significantly higher than the OECD average, and the countries whose bars are shaded in dark blue
are those whose scores were significantly higher than those of Australia.

110 600
90
70 562
555
546
50 541
527
30 519
514 ]
10 OECD
] ] ] ] ] ] ] ] ] average
bl G 496
-10
United United  Australia®  New Canada* Finland*  Korea* Hong Kong Singapore* Shanghai
States  Kingdom Zealand* — China* - China*

Figure 2.4 PISA 2009 Mathematical literacy achievement comparison with OECD average score

There were statistically significant gender differences in mathematical literacy performance in
many participating countries, with males outscoring females by 12 score points, on average, across
the OECD. The difference in the average performance of females and males in Australia was a
significant 10 score points, similar to that seen in Canada (12 score points) but substantially lower
than that in the United Kingdom (21 score points) or the United States (20 score points).

Interpreting such data can be challenging. We know what the mean and standard deviation are,
but what does this mean in practical terms? Fortunately we are able to get a rough measure of
how many score points comprise a year of schooling, given that 15-year-old students are often in
adjacent grades.

For Australia, in mathematical literacy, one year of schooling was found to be the equivalent
of 41 score points.

Looking at the difference between the scores of students in Shanghai — China and those in
Australia, the score difference of 86 score points translates to just over two years of schooling.

Programme for International Student Assessment




Proficiency levels

While mean scores provide a comparison of student performance on a numerical level,
proficiency levels provide a description of the knowledge and skills that students are typically
capable of displaying. This produces a picture of the distribution of student performance within
a country (or other groups of students) across the various proficiency levels. In PISA 2003, six
levels of proficiency for mathematical literacy were defined, which have remained unchanged
for subsequent cycles.? The continuum of increasing mathematical literacy (with Level 6 as

the highest and Level 1 as the lowest proficiency level) is shown in Figure 2.5, along with the
summary descriptions of the kinds of mathematical competencies associated with the different
levels of proficiency. A difference of 62 score points represents one proficiency level on the PISA
mathematical literacy scale.

_ Students at this level can ...

conceptualise, generalise, and utilise information; are capable of advanced mathematical
|:| Level 6 thinking and reasoning; have a mastery of symbolic and formal mathematical operations and
relationships; formulate and precisely communicate their findings, interpretations and arguments.

develop and work with models for complex situations; select, compare, and evaluate appropriate

D Level 5 problem solving stratlegies for dealirjg with complex problems; vyork strategically using broad,
well-developed thinking and reasoning skills; reflect on their actions and formulate and
communicate their interpretations and reasoning.

work effectively with explicit models for complex concrete situations; select and integrate
|:| Level 4 different representations, including symbolic ones; utilise well-developed skills and reason
flexibly; construct and communicate explanations and arguments.

execute clearly described procedures, including those that require sequential decisions; select
|:| Level 3 and apply simple problem solving strategies; interpret and use representations; develop short
communications reporting these.

interpret and recognise situations in contexts that require no more than direct inference; extract
- Level 2 relevant information from a single source and make use of a single representational mode;
employ basic procedures; make literal interpretations of the results.

answer questions involving familiar contexts where all relevant information is present and the

D Level 1 questions are clearly defined; identify information and carry out routine procedures according to
direct instructions in explicit situations; perform actions that are obvious and follow immediately
from the given stimuli.

not demonstrate even the most basic types of mathematical literacy that PISA measures. These

- Below Level 1 students are likely to be seriously disadvantaged in their lives beyond school.

Figure 2.5 Summary descriptions of the six proficiency levels on the overall mathematical literacy scale

Students who scored below 358 score points are placed below Level 1. This is not to say that

these students were incapable of performing any mathematical operation, but they were unable to
utilise mathematical skills in a given situation as required by the easiest PISA tasks. Their pattern

of answers was such that they would be expected to be able to solve fewer than half of the tasks

in a test made up solely of questions drawn from Level 1. These students are likely to have serious
difficulties in using mathematics to benefit from further education and learning opportunities in life.

Internationally, Level 2 has been defined as a ‘baseline’ proficiency level, as it represents a
standard level of mathematical literacy proficiency where students begin to demonstrate the kind
of skills that enable them to actively use mathematics as stipulated by the PISA definition.

The percentage of students at each of the six proficiency levels and the proportion not achieving
the lowest proficiency level is shown in Figure 2.6. Australia is doing reasonably well in
mathematical literacy, with 16 per cent not achieving the lowest levels described by MCEECDYA
as being an acceptable standard.

3 Information about how the proficiency levels are created is available in Chapter 2 of Challenges for
Australian Education: Results from PISA 2009.
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Australia

OECD average

Shanghai-China 24‘ | | 27 |
Korea | | 18 ‘ | 8 |
Finland 28‘ | 1‘7 [5]
Hong Kong-China 20 11 |
Canada 25 | 14 ]4]
Singapore ‘ 20 | ‘16 |
Australia 22‘ | 12 |4 |
New Zealand ‘ | 14 | 5 |
United States 7 [8 Pl
United Kingdom 1‘8 BN
OECD average [ 10 [3
-40 e‘o 80 100

B Belowlevel 1 [ Level1 [ Level2 [MLevel3 [JLevel4 [Jlevel5 [ ]Level6

Figure 2.6 Proportions of students at mathematical proficiency levels for Australia and comparison
countries

However it is also evident from the figure that Australia has a substantially higher proportion

of students in the lower mathematical literacy levels than some other countries, and a lower
proportion of students in the higher levels of achievement. Both need to be addressed if Australia’s
achievement is to improve.

Gender differences

The proportions of females and males at each of the mathematical literacy proficiency levels in
Australia and across the OECD countries are shown in Figure 2.7.

Females 21

Males 25 22 ‘ 13 ‘5‘

Males 24 ‘ 19 ‘ 1 ‘4‘

D
20 0 20

100 80 60 40 40 60 80

Percentage of students

100

B Belowlevel 1 [ Level1 [ Llevel2 [[Level3 [JLevel4 [Jlevel5 [ ]Level6

Figure 2.7 Proportions of students at mathematical proficiency levels by gender, Australia and OECD
average
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D Aslightly larger proportion of male than female students in Australia achieved at the higher
proficiency levels, and about the same proportion of each at the lower proficiency levels.

D InAustralia, 15 per cent of females and 18 per cent of males reached Level 5 or 6, compared
to 10 per cent of females and 15 per cent of males across OECD countries.

Performance on the mathematical literacy subscales

Earlier in this chapter, we described the components of mathematical literacy (subscales) —
Space and shape, Change and relationships, Quantity, and Uncertainty. The difference between
Australian male and female students’ scores and the OECD average on each of these is shown in
Figure 2.8.

w
(&)

30

25

20

(&}

Difference from OECD average (score points)

0
Space & shape Change & relationships Quantity Uncertainty

OECD average 496 499 501 502
Mathematics subscales D Females - Males

Figure 2.8 Performance on mathematics subscales for Australian students relative to OECD average

D Australian students scored significantly better than the OECD average on each of the subscales.

D Australian students performed relatively better overall on uncertainty tasks, relatively less well

on quantity tasks.

D The largest gender differences are apparent in space and shape and uncertainty, in which
males scored substantially as well as significantly higher than females.

Performance over time

One of the main aims of PISA is to examine student performance over time so that policy makers
can monitor learning outcomes in both a national and international context. PISA 2003 defined the
mathematical literacy framework in detail, and so comparisons can be made to this point in time.

A handful of countries saw an improvement in their mathematical literacy scores from 2003 to
2009, but Australia’s average score declined by a significant 10 points. There was no statistical
difference between the proportion of Australian students achieving Level 2, the ‘baseline’
proficiency level, in 2003 and 2009; however, the number of Australian students achieving Level 5
or above, in the top performing category, had dropped from 20 to 16 per cent.
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Results for other groups of students within Australia

Indigenous students:

D achieved a mean score of 441 points, compared to a mean score of 517 points for non-
Indigenous students. The difference in scores is the equivalent of almost two years of schooling.

D were underrepresented at the higher end of the mathematical literacy proficiency scale. Just
four per cent achieved at or above Level 5, compared to 17 per cent of non-indigenous
Australian students and 13 per cent of students on average across the OECD achieved this

level.

D were over-represented at the lower end of the mathematical literacy proficiency scale. Forty
per cent failed to reach Level 2, compared to 22 per cent of students across the OECD and 15
per cent of non-Indigenous students in Australia.

Students with a language background other than English:

D performed at a similar level to students who spoke English as their main language, with mean
scores of 517 points and 516 points respectively.

D were more likely than students with an English-speaking background to achieve at the higher
proficiency levels 5 or 6 (21% and 16% respectively).

D were more likely than students with an English speaking background to not reach Level 2,
(20% and 14% respectively).

Students from the lowest quartile of socioeconomic background:

D achieved a mean score of 471 points compared to students in the o
. . . . This difference was
highest quartile who achieved a mean score of 561 points. i

equivalent to almost three full

D were overrepresented at lower levels of achievement and years of schooling.

underrepresented at higher levels. Just six per cent of students in
the lowest quartile compared with 29 per cent of students in the highest quartile achieved
at or above Level 5, while five per cent of students in the highest quartile of socioeconomic
background, compared to more than one quarter (28%) of students in the lowest quartile,
failed to reach Level 2.

Students in metropolitan areas:

D performed at a significantly higher level than students in schools from
provincial areas, who in turn performed at a significantly higher level
than students attending schools in remote areas.

The score differences equate
to about 2/3 of a school
year between students in
metropolitan and provincial
schools and a further year

D were more likely to achieve at the higher proficiency levels - 18 per
cent from metropolitan schools, 12 per cent from provincial schools

and eight per cent of students from remote schools, achieved at or higher than those in remote

above Level 5. schools.

D were less likely to achieve at the lower proficiency levels - 15 per cent
of those in metropolitan schools, 19 per cent in provincial schools, and 33 per cent of students
in remote schools failed to reach Level 2.

Points to ponder

D Do you think there are substantial differences in the performance of different groups of students
' in your school, as described in this chapter?
& D What are some reasons you can think of that would help explain gender differences in
mathematical literacy?
D One of the things that Australia needs to do to improve our overall mathematical literacy is to
address the issue of the underachievement of disadvantaged students. What are some ways that
schools can help students who are from lower levels of socioeconomic background?
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D Australian students perform relatively well on items to do with statistics and chance, and
relatively less well on items to do with measurement. Do you see similar patterns in your class
or school? As both are significant areas of the curriculum, can you think of why this might be
so, and suggest ways of improving students” understanding of measurement?
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Chapter

A selection of sample questions is provided in this section to show the types of items that

have been included in the assessment as well as to illustrate the various aspects of the PISA
mathematical literacy framework (the overarching ideas, competencies and situations) and

the wide range of complexity involved in such tasks. Table 3.1 presents a map of the sample
mathematical literacy items included in this section of the report. The most difficult items are
located at the top of the figure, at the higher proficiency levels, and the least difficult, at the lower

levels, at the bottom. Each of the items is placed in the relevant proficiency level according to the
difficulty of the item (the number in brackets), and the content area they are assessing.

Content Area

Change and . .
Space and Shape Relationships Quantity Uncertainty

Proficiency
level

6 CARPENTER gﬁ:gg‘nez (723) ROBBERIES
Question 1 (687) (full credit) Question 1 (694)
669.3 score
points
WALKING
Question 2 (666)
5 (partial credit 2)
WALKING
Question 1 (611)
607.0 score
points
UTLNE] EXCHANGE RATE
4 Question 2 (605) Question 3 (586)
(partial credit 1)
544.7 score
points
3 NUMBER CUBES
Question 1 (503)
482.4 score
points
5 EXCHANGE RATE
Question 2 (439)
420.1 score
points
1 EXCHANGE RATE
Question 1 (406)
357.8 score
points

Figure 3.1 Sample items and cut-off score points for the mathematical literacy proficiency scale
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In each of the graphs in this chapter, the bars represent the difference between the
proportion of students in the country that answered correctly and the OECD average
proportion of students that answered correctly. Countries are asterisked (*) if this
proportion is significantly different to the OECD average, and bars are shaded dark

blue if the proportion is significantly different to the proportion of Australian students.
Comparisons will be made to all of the countries used in the previous chapter other than
Shanghai-China and Singapore, who did not participate in PISA in 2003.

Exchange Rate

The unit ‘Exchange Rate’ consisted of three items involving number operations (multiplication

and division) set in the overarching Quantity area and in a public context. The concept of foreign
exchange rates, and the possibility of both increasing and decreasing movements, formed the basis
of this constructed response unit. Exposure to the operation and use of exchange rates may not be
common to all students but the concept can be seen as belonging to skills and knowledge required
in the global economy.

o =1 —y [ M L
A GHANGE HaATE
Feeti-Lornn T Bzt asas piecsgaacr g baaps e Socl &fSria e 2 moaths a5 ar
=ecarce eludenl  Ehe casdee o chianpgs st s pzapore delles 2506 2 in Sl
Afrar: rans fZ6H)

Exchange Rate Question 1

The first item in ‘Exchange Rate’ required students to interpret a simple, explicit mathematical
relationship (the exchange rate for 1 Singapore dollar/1 South African rand), and then apply a small
reasoning step to apply the relationship directly to 3000 Singapore dollars, using the calculation
(3000 x 4.2). This item is set in a relatively familiar context and the direct application of well-
known mathematical knowledge places this item at proficiency level 1. The following answer is an
example of a student response that was awarded full credit.

Kizi Lirg Faured acttbat e zscharge rale beteseen Snzapane dallars ans: Souk
&70E1 RN Was:

-

Rhi-Liry cliareged 3300 Singasona dalars iabo Soath A5ce rand Al s eachangs
rake,

How s meney noSackh Afncan rmad did Wie Ling gr-t

o Ndls
Arisyer: "I""I:'h"]
ADTD seDor X ZAR
Fe00y 2o 12 oo

Figure 3.2 shows the proportion of students in Australia and each of the comparison countries who
answered this item correctly.
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Figure 3.2 Proportion of students providing correct response to Exchange Rate question 1: Australia and
comparison countries

D Just over 80 per cent of Australian students in 2003 were able to answer question 1 from the
Exchange Rate unit correctly. This proportion was approximately equal to the average across
OECD countries.

D Asignificantly lower proportion of Australian students answered this question correctly
compared to students from Canada, Finland and Hong Kong-China.

D Asignificantly higher proportion of Australian students answered this question correctly than
the United Kingdom and the United States.

Exchange Rate Question 2

The second item in ‘Exchange Rate’ was also a short constructed response item, which required a
limited form of mathematisation (understanding a simple text) as well as deciding that division was
the correct procedure.

Students were required to interpret a simple, explicit mathematical relationship and only a small
reasoning step was required to apply the relationship directly to 3900 South African rand using
a calculation (3900/4.0). This question belonged to the reproduction competency cluster and
proficiency level 2. An example of a correct student response is provided below.

O refuming o 2ingesome elbar 5 rorihs, Mal-Lirg hed 3 530 ZAF ek Ehe
chianged his cask la S npapore dolaes, neling 1al b sasbarye @e bad slarged
bra:

1 8460 = 4.0 £aK

Hrw Turh money in Sngaper: aolaes S5d M Ling gra?

L~
BNEWET . 1'”
SO AEI 2 N EEDR
290 Ao
—_ — - 5 :I'v:

I
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Figure 3.3 Proportion of students providing correct response to Exchange Rate question 2: Australia and
comparison countries

D Three-quarters of Australian students responded to question 2 from the Exchange Rate unit
correctly, which was a similar proportion to that found across OECD countries, on average.

D Australia had a significantly lower proportion of students responding correctly than Canada,
Finland and Hong Kong-China.

D More Australian students than students from the United Kingdom and the United States
answered this question correctly.

Exchange Rate Question 3

The mathematics required to solve the problem in this open constructed response item was more
demanding as students needed to reflect on the concept of exchange rate movements and the
subsequent consequences. The required procedural knowledge was more

complex, and involved students applying flexible reasoning and reflection. | Exchange Rate Question 3

. . . is an example of a quantit
The student example below achieved full credit. Students had to interpret . P i q y
e . . . item. Australian students
the specified change in the exchange rate and apply basic computational )
. I . i did not perform as well on
skills or quantitative comparison skills to solve the problem. Students also
. . . . - these tasks compared to other
needed to provide an explanation of their conclusion. This item belongs to
content tasks.

the reflection cluster and represents proficiency level 4.

Programme for International Student Assessment




Mudng thzae o mortks the aachange rat: aaz slargoed oo 4.2 00 4.0 ZAR pe-
&a0.
Uess il in Me-Lrg'a fawcus That the s=charge rass now weas 4.0 JAH netsas =f 4.7
FAF, whon s chaged b Souc Aldcar raned zask o Bingapore collars? Give an
wxolaralion o sUupson oL e anavier.

W i . ) |

fre b wwar Meio b A2 5 ’.’F-u'-"'?-!-*l" DgariL sha
1¢'J AR "'|Ia-..:-l-f- o b She e IJ i "' L

-

Al af T2 ZAE e 5 &p.

Students found this item more difficult than the previous two questions in this unit, with about half
of the Australian students in 2003 successfully answering this question.
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Figure 3.4 Proportion of students providing correct response to Exchange Rate question 3: Australia and
comparison countries

D The proportion of Australian students who answered question 3 correctly was significantly
higher than the average proportion of students across OECD countries.

D While the proportion of Australian students responding correctly is significantly lower than the
proportion of students in Canada, Finland and Hong Kong-China, the proportion is significantly
higher than in New Zealand, the United States and Korea.
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Number Cubes

During their education, students would have encountered many games and activities, whether
formal or informal, that use number cubes or dice. Somewhat challenging was the problem posed
below, which required spatial insight or mental visualisation technique, as students needed to
imagine how the four planes of number cubes, if reconstructed into a three-dimensional number
cube, obey the numerical construction rule given in the information (i.e. two opposite sides have a

total of seven dots).

This problem required the encoding and spatial interpretation of two-dimensional objects,
interpretation of the connected three-dimensional object, and checking certain basic
computational relations. Thus this item fits within the connections competency cluster, an essential
part of mathematical literacy, because students live in three-dimensional space and are often
confronted with two-dimensional representations.

FioEH CLI S
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'3 100 mnka g arna nureer tuse by ik ag, f2Hng cad guirg casthearz, This
Ladn g L s e cpedt i vez s, D0 e | o s Die o w557 220 o Selivgs Al can be
Lt 1nomake cybess, ek Snbs 20 o mifsn.
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Full credit was given to students who correctly identified the four expected results, as shown in the
example below. This complex multiple-choice item is situated in a personal context, is placed in
the overarching area of Space and Shape and illustrates proficiency level 3.

Obeyvs the rule that the sum of
opposite Faces is 77

I Yes {Ng
I (_"-.’@JE i Mo

Il (Yes) Mo

N
=

Shupe

IV ~ Yes (No ]
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Figure 3.5 Proportion of students providing correct response to Number Cubes question 1: Australia and
comparison countries

D Almost 70 per cent of Australian students answered question 2 from the Number Cubes correctly
which was significantly more than the average proportion of students for OECD countries.

D The proportion of Australian students who answered this question correction was significantly
higher than students from the United Kingdom and the United States, but was lower than those
from Finland and Korea.

Walking

Reflecting on embedded mathematics from daily life is part of acquiring mathematical literacy
and the unit ‘Walking’ is an example of this phenomenon. Students would be familiar with seeing
their footprints in sand or soil but probably would not have given much thought to the relationship
between the ‘number of steps taken per minute’ and ‘pace length’.

WALKING

o o mon e s mnggn
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The two questions in this unit were open constructed response items, in the Change and
Relationships area and situated in a personal context.
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Walking Question 1

The first item required problem solving by asking students to make use of a formal algebraic
expression — substituting a simple formula and carrying out a routine calculation: if 70/p = 140
what is the value of p? Students needed to recognise that as the pace length increases, so the
number of steps per minute will decrease, and in order to gain credit for this item students needed
to carry out the actual calculation.

This item belongs to the reproduction competency cluster and illustrates Level 5 proficiency.
The following example gained full credit for showing the correct substitution of numbers in the
formula, along with the correct answer, and the scoring guide follows.

H -acinmin anshes -5 Aess awions: Ana He ki lakes o0 skee pee mio e, bt is
dalr'2 DAca Ell'l'_.lli'l":' Bt war vt
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Walking scoring — Question 1

Full Credit

0.5mor 50 cm, B} (unit not required).

D 70/p=140

» 70=140p
» p=05.
» 70/140.

Partial Credit
Correct substitution of numbers in the formula, but incorrect answer, or no answer.

] % = 140 [substitute numbers in the formula only].

70

D> —= 140
p

D 70=140p

D p =2 [correct substitution, but working out is incorrect].

OR Correctly manipulated the formula into P=n/140, but no further correct working.
No Credit

D Other responses
D 70cm.

5
]
I I I I I I I
0 average
-5

United United Australia New Finland* Canada* Korea* Hong Kong
States* Kingdom* Zealand — China*

Difference from OECD average (percentage points)
)

Figure 3.6 Proportion of students providing correct response to Walking question 1: Australia and
comparison countries
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D Around one-third of Australian students received full credit for their answer to this question.

D The proportion of Australian students who answered this question correctly was significantly
higher than the proportions of students from the United Kingdom or the United States who
did so.

Walking Question 2

The second item in ‘Walking’ also involved the relationship between ‘the number of steps per
minute’ and ‘pace length’, but with the added requirement of using a non-routine calculation.
Students needed to calculate the number of steps per minute when the pace length is given (0.8m),
which requires proper substitution: n/0.80 = 140 and the observation that this equals n = 140 x
0.80 = 112 (steps per minute).

More than routine operations were required here, with substitution in an algebraic expression
being used followed by manipulating the resulting formula, in order to carry out the required
calculation. The next step required going beyond the observation that the number of steps is 112,
as the question also asked for the speed per minute — the subject walks 112 x 0.80 = 89.6 metres,
so his speed is 89.6 metres/minute. The final step is to transform this speed in metres/minute into
kilometres/hour — a more common unit of speed.

Full credit for this item illustrates the high level of skills and knowledge required at proficiency
level 6. Only one-fifth of Australian students received full credit for their response. Students
providing the above explanations were given full credit as they showed they were able to complete
the conversions and provide a correct answer in both the requested units. This problem is rather
complex and belongs to the connections competency cluster. Not only is use of a formal algebraic
expression required, but also completing a sequence of different but connected calculations that
need proper understanding of transforming formulae and units of measure. The following sample
response was awarded full credit.

e A ko ot pecsinrgE s M b T fenri.a sapplics 12 Breos d'=
walkln.

Calslale B’y sl wmesd s ikl met 7 IS S i i v by ver b,
SN WL war<1d ook,

Students who scored at a high level of partial credit for this item demonstrated high Level 5 ability
with a difficulty of 666 score points, only 3 score points below Level 6. Although students were
able to go further than finding the number of steps per minute, and made some progress towards
the conversions, their final responses were not entirely correct or remained incomplete.

A lower level of partial credit was given when students showed they had understood the formula
and correctly substituted the appropriate values, finding the number of steps per minute. These
responses were placed at the top part of Level 4- just below the boundary of Level 5.
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Walking scoring — Question 2

Full Credit

Correct answers (unit not required) for both metres/minute and km/hour: n = 140 x .80 = 112. Per minute he walks 112 x
.80 metres = 89.6 metres. His speed is 89.6 metres per minute. So his speed is 5.38 or 5.4 km/hr.

Full credit given as long as both correct answers are given (89.6 and 5.4), whether working out is shown or not. Note
that errors due to rounding are acceptable. For example, 90 metres per minute and 5.3 km/hr (89 X 60) are acceptable.

b 89.6, 54.
D 90, 5.376 km/h.
D 89.8, 5376 m/hour [note that if the second answer is given without units, it should be coded as partial credit].

Partial Credit (2-point)
As for full credit but fails to multiply by 0.80 to convert from steps per minute to metres per minute. For example, his

speed is 112 metres per minute and 6.72 km/hr.
» 112,6.72 km/h.

OR The speed in metres per minute correct (89.6 metres per minute) but conversion to kilometres per hour incorrect or
missing.

D 89.6 metres/minute, 8960 km/hr.
D 89.6, 5376.

D 89.6, 53.76.

D 89.6, 0.087 km/h.

D 89.6, 1.49 km/h.

OR Correct method (explicitly shown) with minor calculation error(s) not covered by Code 21 and Code 22. No answers
correct.

D n=140x .8 = 1120; 1120 x 0.8 = 896. He walks 896 m/min, 53.76km/h.
D n=140x .8 = 116; 116 x 0.8 =92.8. 92.8 m/min -> 5.57km/h.

Partial Credit (1-point)
Only 5.4 km/hr is given, but not 89.6 metres/minute (intermediate calculations not shown).

) 54.

D 5.376 km/h.

D 5376 m/h.

OR n =140 x .80 = 112. No further working out is shown or incorrect working out from this point.
» 112.

» n=112, 0.112 km/h.

D n=112, 1120 km/h.

» 112 m/min, 504 km/h.

No Credit

D Other responses.
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Figure 3.7 Proportion of students providing correct response to Walking question 2: Australia and
comparison countries
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D Just over one fifth of Australian students received credit for their response to this item.

D The proportion of Australian students that received credit was significantly higher than the
proportions of students from the United Kingdom and the United States.

D Greater proportions of students in Canada, Finland and Hong Kong—China received credit on
this item compared to students in Australia.

Robberies

The unit ‘Robberies’, situated in the public context, provided a graphical representation showing
the number of robberies within a two-year period, along with a statement made by a reporter. This
type of item is frequently presented in the media where graphics have been used to support a
predetermined message.

The item involved data interpretation, placing it in the overarching area of Uncertainty and in

the connections competency cluster, as students needed to rely on reasoning and interpretation
competencies together with communication skills. Students were asked, using an open constructed
response, to consider the reporter’s statement and with the use of the graph explain whether the
statement fitted the data.

An example of a full credit response is shown below. To obtain full credit, students had to indicate
that the statement was not reasonable and explain their judgment in appropriate detail. Answers
had to focus on an increase given by the exact number of robberies in absolute terms and also in
relative terms.
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This item illustrated a proficiency at Level 6. The question required

Robberies Question 1 is an . . .
students to be able to communicate an argument based on interpretation

example of an uncertainty . . Lo o
) o of data, using some proportional reasoning in a statistical context.
item. This kind of task was a
relative strength for Australian
students compared to other

content areas tasks.
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Robberies scoring — Question 1

Note: The use of NO in these codes includes all statements indicating that the interpretation of the graph is NOT
reasonable. YES includes all statements indicating that the interpretation is reasonable. Please assess whether the
student’s response indicates that the interpretation of the graph is reasonable or not reasonable, and do not simply take
the words “YES” or “NO” as criteria for codes

Full Credit
No, not reasonable. Focuses on the fact that only a small part of the graph is shown.

D Not reasonable. The entire graph should be displayed.

D | don'tthink it is a reasonable interpretation of the graph because if they were to show the whole graph you would see
that there is only a slight increase in robberies.

D No, because he has used the top bit of the graph and if you looked at the whole graph from 0 — 520, it wouldn’t have
risen so much.

D No, because the graph makes it look like there’s been a big increase but you look at the numbers and there’s not
much of an increase.

D No, because the graph makes it look like there’s been a big increase but you look at the numbers and there’s not
much of an increase.

OR No, not reasonable. Contains correct arguments in terms of ratio or percentage increase.
D No, not reasonable. 10 is not a huge increase compared to a total of 500.

D No, not reasonable. According to the percentage, the increase is only about 2%.

D No. 8 more robberies is 1.5% increase. Not much in my opinion!

D No, only 8 or 9 more for this year. Compared to 507, it is not a large number.

OR Trend data is required before a judgement can be made.

D We can't tell whether the increase is huge or not. If in 1997, the number of robberies is the same as in 1998, then we
could say there is a huge increase in 1999.

D There is no way of knowing what “huge” is because you need at least two changes to think one huge and one small.

Partial Credit
No, not reasonable, but explanation lacks detail. Focuses ONLY on an increase given by the exact number of robberies,

but does not compare with the total.

D Not reasonable. Itincreased by about 10 robberies. The word “huge” does not explain the reality of the increased
number of robberies. The increase was only about 10 and | wouldn't call that “huge”.

D From 508 to 515 is not a large increase.
» No, because 8 or 9 is not a large amount.
D Sort of. From 507 to 515 is an increase, but not huge.

[Note that as the scale on the graph is not that clear, accept between 5 and 15 for the increase of the exact number of
robberies.]

OR No, not reasonable, with correct method but with minor computational errors.
D Correct method and conclusion but the percentage calculated is 0.03%.
No Credit

No, with no, insufficient or incorrect explanation.

» No, | don't agree.

D The reporter should not have used the word “huge”.

D No, it's not reasonable. Reporters always like to exaggerate.

OR Yes, focuses on the appearance of the graph and mentions that the number of robberies doubled.
D Yes, the graph doubles its height.

D Yes, the number of robberies has almost doubled.

OR Yes, with no explanation, or explanations other than those above.

OR Other responses.
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Figure 3.8 Proportion of students providing correct response to Robberies question 1: Australia and
comparison countries

D Forty per cent of Australian students answered this question correctly, receiving either full or
partial credit for their responses.

D This proportion was higher than that recorded by the United Kingdom, the United States, Korea
and across OECD countries on average, but significantly lower than that for Finland.

Carpenter

‘Carpenter’, also a complex multiple-choice item, fits into the educational context and belongs to
the Space and Shape area. Students were presented with four possible designs for garden beds and
were asked to determine if each design could be made with 32 metres of timber.
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Students needed to rely on their geometric knowledge, not only recognising the three rectangular
shapes but also the parallelogram and that it requires more than 32 metres of timber. This use of
geometric insight and argumentation skills and technical geometric knowledge makes this one of
the more difficult items at Level 6.
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Difference from OECD average (percentage points)

To obtain full credit, as shown below, students had to correctly identify which of the garden beds
could be constructed. Partial credit was given when students correctly identified three of the four
answers. A quarter of Australian students were awarded full credit for their response to this question.
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Figure 3.9 Proportion of students providing correct response to Carpenter question 1: Australia and
comparison countries

D The proportion of Australian students who correctly answered this question was significantly
higher than across the OECD countries on average.

D More students from Hong Kong-China and Korea than from Australia answered this question
correctly, while fewer students in the United Kingdom and the United States gave the correct
answer.

Other findings

D Differences in the proportion of male and female students who answered individual items
correctly were found in only two of the released items presented here: Question 2 in the
Number Cubes unit (placed at Proficiency Level 3), and Question 1 in the Carpenter unit, a
difficult item (placed at Proficiency Level 6).
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Chapter

This chapter looks at several aspects of student learning that are of interest to teachers. Ensuring
students have positive attitudes towards learning, and that they have the motivation and capacity to
continue learning throughout their lives, are important outcomes of learning in their own right. In
addition, helping students to overcome mathematics anxiety, and assisting students in developing
strong and positive learning strategies will help them become effective learners of mathematics.
This chapter looks at these cognitive, affective and attitudinal aspects of learning mathematics.

This chapter will examine, for Australian students:

D Students’engagement with mathematics. This is related both to students” own interest and
enjoyment and to external incentives.

D Students’ beliefs about themselves. This includes students’ views about their own competence
and learning characteristics in mathematics, as well as attitudinal aspects, which have both
been shown to have a considerable impact on the way they set goals, the strategies they use
and their performance.

D Students” anxiety in mathematics, which is common among students in many countries and is
known to affect performance.

D Students’ learning strategies. This considers what strategies students use during learning. Also of
interest is how these strategies relate to motivational factors and students’ self-related beliefs as
well as to students’ performance in mathematics.

Engagement with mathematics

Interest and enjoyment in mathematics

Students were asked to think about their views on mathematics and indicate their agreement on
the following statements:

D | enjoy reading about mathematics

D I look forward to my mathematics lessons

D | do mathematics because | enjoy it

D |aminterested in the things | learn in mathematics.

Students’ responses to these items were combined into an interest and enjoyment in mathematics
index. Australia’s mean on this index was about the same as that for the OECD overall. In
Australia, as well as in many other countries, there was a significant gender difference in
enjoyment in mathematics, with males being significantly more interested and enjoying

mathematics to a greater extent than females. There was a positive correlation in Australia with
achievement on the mathematical literacy part of the assessment. This was around 0.2, and the
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difference between the students who scored in the highest quartile on this index and those whose
scores were in the lowest quartile was around 50 score points, which is the equivalent of a year of
schooling.

Figure 4.1 shows the responses of all Australian students to the items on
the interest and enjoyment of mathematics scale. The item that stands out
in this analysis is “I look forward to maths lessons”, to which a total of 83
per cent of students responded positively.

Kudos to maths teachers!!
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| enjoy reading about | look forward to | do maths | am interested in the
mathematics maths lessons because | enjoy it things | learn about maths

D Strongly agree - Agree D Disagree - Strongly disagree

Figure 4.1 Responses of Australian students to interest and enjoyment of mathematics items

However there are gender differences in achievement, and there are corresponding gender
differences in attitudes towards mathematics. Australian male and female students’ responses to
one of the items in this scale: “I do maths because | enjoy it”, is presented in Figure 4.2. Across
Australia just 37 per cent of all students agreed or strongly agreed that they enjoyed doing
mathematics.

The proportion of females is significantly higher than the proportion of males who strongly disagree
with this statement, while the proportion of males who agree with the statement is significantly
higher than the proportion of females. The relationship between enjoyment and doing well is also
clear here (although the direction of the relationship is not): the difference between the average
scores of students who strongly agreed that they enjoyed mathematics and those who strongly
disagreed was about the equivalent of a year of schooling, for both male and female students.
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Figure 4.2 Enjoyment of reading and achievement in mathematical literacy for male and female Australian
students

Instrumental motivation

While it appears that enjoyment and interest in mathematics is a bit of a mixed bag with students,
the overwhelming majority of Australian students could see a long-term benefit to studying the
subject. Instrumental or extrinsic motivation was measured in PISA 2003 by asking students their
level of agreement with the following:

P Making an effort in mathematics is worth it because it will help me in the work that | want to
do later on.

D Learning mathematics is important because it will help me with the subjects that | want to
study further on in school.

P Mathematics is an important subject for me because | need it for what | want to study later on.

D | will learn many things in mathematics that will help me get a job.

Overall, the Australian mean on the instrumental motivation index was significantly higher than
the OECD mean, indicating that Australian students perceived it as more important than was the
average across the OECD. Of interest is that countries such as Japan, Korea and Hong Kong-China,
particularly the females in those countries, all reported significantly lower levels of instrumental
motivation than on average across the OECD. In Australia, the mean for males on the instrumental
motivation index was significantly higher than for females. This is perhaps not surprising given
that males have a greater tendency to go on to further study in disciplines that demand an
understanding of mathematics.*

Figure 4.3 shows the proportion of students agreeing (combining strongly agree and agree) and
disagreeing (combining strongly disagree with disagree) with each of the instrumental motivation
statements.

4 Watt, H.M.G. (2010). Gender and occupational choice. In J.C. Chrisler, D.R. McCreary (Eds.), Handbook
of Gender Research in Psychology (pp. 379-400), New York: Springer.
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Figure 4.3 Level of agreement with instrumental motivation items

D While not reporting the same level of agreement as males, female students in Australia also
indicated a belief that mathematics is relevant to their futures. Two-thirds of 15-year-old
females think that they will need mathematics in their future study, and three quarters of
females (75%) believe that mathematics will be relevant to their getting a job.

How does this relate to the students in your school? Do they have a realistic idea of what i =
maths will be needed in the career they are aiming for, or the effects of dropping maths ‘

prior to Year 122

Students’ beliefs about themselves

Autonomous learning requires both a critical, realistic assessment of the difficulty of a task, and the
ability to invest enough energy in a task to accomplish it. As they progress through school, students
form views about their own competence and learning abilities. These views have been shown to
have considerable impact on the way a student sets goals, uses strategies and evaluates his or her
own performance.

PISA collected information on mathematics self-efficacy, mathematics self-concept and
mathematics anxiety. Mathematics self-efficacy relates to a student’s beliefs about their capability
to successfully learn mathematics. Self-efficacy may play an important role in learning because it
provides the foundation for motivation and influences the level of effort and persistence a student
applies to performing a task and attaining a particular outcome. Mathematics self-concept relates
to a student’s perception of their own mathematical competence, and belief in one’s own abilities
is highly relevant to successful learning (Marsh, 1993°). Mathematical anxiety is a third factor
assessed in PISA. Students can perceive mathematics in general or specific mathematical tasks as
being potentially intimidating. Subsequently, students may feel helpless and uneasy.

5  Marsh, H.W. (1993). The multidimensional structure of academic self-concept: Invariance over gender and
age. American Education Research Journal, 30(4), 841-860.
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Mathematics self-efficacy

Students were asked to what extent they believe in their own ability to manage learning situations
effectively and to overcome difficulties by indicating their confidence in completing a range of
mathematical tasks:

D Using a bus or train timetable to work out how long it would take to get from one place to
another.

Calculating how much cheaper a TV would be after a 30% discount.
Calculating how many square metres of tiles you need to cover a floor.
Understanding graphs presented in newspapers.

Solving an equation like 3x+5=17.

Finding the actual distance between two places on a map with a 1:10,000 scale.

Solving an equation like 2(x+3)=(x+3)(x-3).

Calculating the petrol consumption rate of a car.

Overall, Australia’s mean was significantly higher than the OECD average, but the score for

males was significantly higher than the score for females. This latter finding was the case for all
countries, but there are substantial differences in the extent of the gender difference. In Australia
males scored significantly higher than the OECD average, females at around the OECD average.
Self-efficacy had the strongest relationship with achievement, with students in the highest quarter
on the index in Australia scoring 132 score points higher than students in the lowest quarter of the
index. This is the equivalent of more than three years of schooling.

Figure 4.4 shows the percentage of male and female Australian students who were confident
or very confident in completing each of the tasks in the self-efficacy items, along with the PISA
mathematical literacy scores of these students.
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Figure 4.4 Confidence in mathematics and achievement for Australian students, by gender

D Notable is that for males and females with equally high levels of confidence, the achievement
scores in mathematics were not significantly different.

D On some items: using a timetable, solving both linear and quadratic equations, there was little
difference in the proportion of males and females who were confident of being able to complete
these tasks. Approximately 20 per cent fewer females reported being confident finding a
distance using a scale and calculating the petrol consumption rate of a car than males.
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Can you think of a reason that females have less confidence in their ability to solve these
types of problem?

Mathematics self-concept

PISA collected information on student beliefs about their own mathematical competence. There

is research about the learning process that has shown that students need to believe in their own
capacities before making the necessary investment in learning strategies that can lead to improved
performance.®

Students were asked about how they felt when studying mathematics by indicating their level of
agreement with the following statements:

D |am just not good at mathematics.

| get good marks in mathematics.

| learn mathematics quickly.

| have always believed that mathematics is one of my best subjects.

In my mathematics class, | understand even the most difficult work.

Australia’s mean on the self-efficacy index was significantly higher than the OECD average —
meaning Australian students are generally more confident of their abilities in mathematics than is
the average across the OECD. In all countries, males had a significantly higher score on this index
than females. Self-efficacy is strongly associated with achievement in mathematics, with 100 score
point difference between the scores of those students in the lowest quarter of the index and those
in the highest quarter. This is the equivalent of about 2 V2 years of schooling.

The percentage of male and female students who agreed or strongly agreed with each of these
items (other than the first, for which the proportion who disagreed or strongly disagreed was used),
along with their mathematical literacy scores, is shown in Figure 4.5.
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Figure 4.5 Proportion of student agreement with mathematics self-concept items

6 Zimmerman, B.J. (1999). Commentary: Toward a cyclically interactive view of self-regulated learning.
International Journal of Educational Research, 31(6), 545-551.
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D Students are less positive about their mathematical competence in general than in their ability
to solve particular problems. However more than half had a strong self-concept in mathematics
— fewer agreed that mathematics is one of their best subjects or that they understand the most
difficult work.

P Male students were more likely to agree to each of the items, showing higher levels of
confidence in mathematics overall.

D There were no gender differences in achievement when the level of self-concept was the same.

Do you talk explicitly to students about their self-confidence?

Can you think of ways to get female students to have more accurate self-confidence?

Mathematics anxiety

Students were asked about feelings of helplessness and the emotional stress they have when
dealing with mathematics. PISA collected information about students’” mathematics anxiety by
asking them to think about mathematics and answer to what extent they agreed with the following
statements:

D | often worry that it will be difficult for me in mathematics classes.
| get tense when | have to do mathematics homework.
| get nervous doing mathematics problems.

| feel helpless when doing a mathematics problem.

I worry that | will get poor marks in mathematics.

The items were used to construct an index representing mathematics anxiety. Australian students
reported slightly lower levels of mathematics anxiety than on average across the OECD, however
the level of anxiety for females was significantly higher than the OECD average and the level for
males significantly lower than the OECD average. Females reported significantly higher levels of
mathematics anxiety in all countries other than Poland and Serbia.

A strong negative association was found between mathematics anxiety and mathematics
performance. Students reporting a high level of mathematics anxiety performed at a lower level
than students reporting a low level of mathematics anxiety. There was an 86 score point difference
between students in the lowest quarter on the mathematics anxiety index and those in the highest
quarter on the index. This difference equates to around two years of schooling.

Figure 4.6 shows the proportion of male and female students who agreed or strongly agreed with
each of the items on the mathematics anxiety scale. The black line at the top of the figure shows
the scores for students who did not agree with the item — on three out of the five items this was
fortunately less than 50 per cent of students.
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Figure 4.6 Proportion of student agreement with mathematics anxiety items

D Female students agreed to a greater extent on each of the mathematics anxiety items.

D The levels of helplessness are relatively low. Scores for both males and females are lowest for
students who agreed with this item.

D Major issues for female students were worrying about mathematics classes being difficult and
that they would get poor marks in mathematics. Combined with the previous finding that
two-thirds of female students agree or strongly agree that they need mathematics for their
future lives, this sets up a tension for those students who have a moderate or strong level of
mathematics anxiety, which may potentially have ramifications on students’ decisions to pursue
higher level mathematics or careers involving mathematics.

wh I How do you think your students would respond to these items?

Do you think that the females in your classes have substantially higher levels of maths
anxiety than the males? What factors might contribute to girls worrying more about their
performance in mathematics than boys in Australian classrooms?

What strategies do you know that could help students who have problems with maths
anxiety?
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Students’ learning strategies

Learning is more than acquiring knowledge, it involves being able to process information
efficiently, relate it to existing knowledge and apply it to different situations. Students need to
take an active role in managing and regulating their own learning. PISA focuses on three kinds
of learning strategies — memorisation, elaboration and control strategies. Students provided
information about their learning strategies by indicating their agreement to a range of statements.

Memorisation strategies

Memorisation strategies include rote learning facts or rehearsal of examples. If the learner’s goal

is simply retrieval of information, then this strategy is adequate, however it rarely leads to deep
understanding. To achieve understanding, new information must be integrated into a learner’s prior
understanding.

Students were asked to think about the different ways of studying mathematics and to what extent

they agreed with the following statements:

D [ go over some problems in mathematics so often that | feel as if | could solve them in my
sleep.

D When I study for mathematics, | learn as much as I can off by heart.
D In order to remember the method for solving a mathematics problem, | go through examples
again and again.

D To learn mathematics, | try to remember every step in a procedure.

These items were combined to form an index for memorisation strategies. One of the highest
performing countries in mathematical literacy, Korea, had one of the lowest means on this index,
and all countries that scored at a higher level than Australia in mathematical literacy had scores on
this index significantly lower than the OECD average. However all English-speaking countries had
scores that were significantly higher than the OECD average. On this index, there were no gender
differences amongst Australian students.

Australian students’ responses to the items comprising the memorisation strategy index are shown
in Figure 4.7 (agree and strongly agree combined into agree, and strongly disagree and disagree
into disagree).
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Figure 4.7 Proportion of student agreement with memorisation strategy items
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D Many students showed a strong use of a variety of memorisation strategies. Eighty per cent
of Australian students said that they learn mathematics by trying to remember every step in a
procedure, for example.

D Australian students showed a much greater reliance on rote learning, with 64 per cent agreeing
that they studied for mathematics by learning as much as possible by heart, compared to 45
per cent on average across the OECD.

D Students who agreed to the first two items scored, on average, higher in mathematical literacy
than those who disagreed. On the last two items, there was no difference in scores between
those who agreed and those who disagreed.

Elaboration strategies

Elaboration strategies involve a student integrating new information with their existing knowledge
base or prior learning, by exploring how the material relates to things learned in other contexts,
or how the information could be applied in other contexts. In doing so, they acquire an
understanding of new information, rather than the more superficial memorisation strategies.

The elaboration strategies index is based on students’ responses to:

D When | am solving mathematics problems, | often think of new ways to get the answer.

D [ think how the mathematics | have learnt can be used in everyday life.

D [ try to understand new concepts in mathematics by relating them to things | already know.

J

When | am solving a mathematics problem, | often think about how the solution might be
applied to other interesting questions.

D When learning mathematics, | try to relate the work to things | have learnt in other subjects.
Australia’s mean on this index was not significantly different to the average over the OECD.

Figure 4.8 shows the proportion of students agreeing (combining strongly agree and agree) and
disagreeing (combining strongly disagree with disagree) with the items on this index.
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Figure 4.8 Proportion of student agreement with elaboration strategy items
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D The patterns of response are similar to those over the OECD on average.

D Australian males were more likely than Australian females to agree to the items in this index,
resulting in a significantly higher average score on the elaboration strategy index.

D In general, Australian students do not try to relate work they are doing to other subjects or to
other questions.

Control strategies

Students who use control strategies are able to manage their own learning: they check what they
have learned, assess what they still need to learn and adapt information they have learned to
new situations. The control strategies index was constructed using the student responses to the
following statements:

D When I study for a mathematics test, | try to work out what are the most important parts to learn.

D When I study mathematics, | make myself check to see if | remember the work | have already done.

P When I study mathematics, | try to figure out which concepts I still have not understood
properly.

P When | cannot understand something in mathematics, | always search for more information to
clarify the problem.

P When I study mathematics, | start by working out exactly what | need to learn.

Australian females were slightly more likely to use control strategies than Australian males, and
more likely than on average across the OECD. Figure 4.9 shows the proportion of Australian
students agreeing (combining strongly agree and agree) and disagreeing (combining strongly
disagree with disagree) with the items on the control strategies index.
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Figure 4.9 Proportion of student agreement with control strategy items
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D Australian students overwhelmingly agreed with each of the items comprising the control
strategies index.

D Australian females were more likely to use control strategies than Australian males, and this
resulted in an average score on control strategies for females that was higher than the OECD
average, and significantly higher than that for males.

D The relationship between control strategies and performance varied between countries, with
some questions about how students interpret the questions. In Australia there was a moderate
relationship between achievement and the control strategies index, and students in the highest
quarter of the index scored 23 points higher than students in the lowest quarter of the index.

Final Words

While Australian students continue to perform at a high level comparative to the rest of the world
in mathematical literacy, there was a significant decline in scores between PISA 2003 and PISA
2009. PISA 2012 provides a return to mathematical literacy as the main focus of the assessment
and so will provide further information about Australia’s current position in mathematics
performance. Australia’s participation in international studies allows these comparisons to be
made, and the national data allow patterns to be seen that are often not obvious at a local level.

Of particular concern is the decline in performance of our high achieving students. In PISA 2003,
20 per cent of students achieved proficiency levels 5 or 6 — in PISA 2009 this had declined to 16
per cent. Related directly to this is the proportion of low achievers (students achieving below
proficiency level 2). In PISA 2003, 14 per cent of Australia’s students were achieving at the level
deemed by the OECD to put them at risk of not having acquired the skills necessary for being

a productive and active 21st century citizen. In PISA 2009 this had increased slightly to 16 per
cent of students. Are we teaching too much to the middle? Are we not extending those capable
students enough, and are we addressing the needs of low achieving students?

Broadly, the proportions of students at the lower levels of achievement are strongly linked to
socioeconomic opportunities. Forty per cent of our Indigenous students (compared to 15 per cent
of non-Indigenous students) and 28 per cent of students from the lowest quartile of socioeconomic
background (compared to five per cent from the highest quartile) are not achieving the basic level
of mathematical literacy (i.e. not achieving proficiency level 2). Are there particular strategies that
can be used to scaffold the performance of these groups of students? What resources might these
students be lacking that could help their learning and engagement?

Participation in mathematics in upper secondary school has been declining for a number of
years, and the proportion of students entering courses in science, technology, engineering and
mathematics (STEM) at the tertiary level is concerning.” Some of the reasons for students not
pursuing mathematics past compulsory level may lie in the findings of the last chapter of this
report.

The issue of gender differences in mathematics achievement is an important one. For several
decades now, since campaigns in the late 1970s to increase participation of young women in
mathematics and science related fields, there have been no gender differences in Australia, but
they seem to have crept back. There is much information in this report that can help teachers and
schools to consider the way that mathematics is taught in schools and the messages that young
women receive.

The surveys of students provide some valuable information that may assist in improving outcomes
for all students.

D The data from PISA shows that students who are interested in and enjoy mathematics are more
likely to be doing better at it than those who are not. Recognising the reciprocal relationship

7 Marginson, S, Tytler, R, Freeman, B and Roberts, K (2013). STEM: Country comparisons . Report for the
Australian Council of Learned Academies, www.acola.org.au.
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here, how do we engage students more with mathematics so that they want to do it past the
compulsory years?

D The data also show that enjoyment is not a necessary precursor to high achievement in
mathematics — understanding the role mathematics plays in a students’ future also plays a key
role, and one that teachers and schools are able to assist with by explicitly relating students’
learning to the real world.

D Gender differences need to be addressed. A smaller proportion of female students than male
students achieve at the higher proficiency levels and a larger proportion achieve at the lower
proficiency levels.

D Teachers can support students’” mathematics learning by providing direct and explicit
instructions about strategies for understanding mathematics and tackling problems.
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